Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli

نویسندگان

  • Yan Liu
  • Sylvie Mémet
  • Ricardo Saban
  • Xiangpeng Kong
  • Pavel Aprikian
  • Evgeni Sokurenko
  • Tung-Tien Sun
  • Xue-Ru Wu
چکیده

During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chinese herb-resistance and adherence to human uroepithelial cells of uropathogenic Escherichia coli.

BACKGROUND In order to define the virulence factors between Chinese herb-resistant uropathogenic E. coli and susceptible strains, the UPEC isolates were classified into two groups according to its resistance to Chinese herbs. MATERIALS AND METHODS The susceptibility profile of strains was determined by disk diffusion method. PCR systems were used to detect genes encoding papC, Aer, hly and cn...

متن کامل

Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding.

The binding of uropathogenic Escherichia coli to the urothelial surface is a crucial initial event for establishing urinary tract infection because it allows the bacteria to gain a foothold on the urothelial surface, thus preventing them from being removed by micturition. In addition, it triggers bacterial invasion as well as host urothelial defense. This binding is mediated by the FimH adhesin...

متن کامل

Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism.

One mechanism of initiating innate host defenses against uropathogenic Escherichia coli (UPEC) is the production of cytokines by bladder epithelial cells; however, the means by which these cells recognize bacterial pathogens is poorly understood. Type 1 pili, expressed by the majority of UPEC, have been shown to have a critical role in inducing the expression of IL-6 in bladder epithelial cells...

متن کامل

In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections.

Urinary tract infections, caused mainly by Escherichia coli, are among the most common infectious diseases. Most isolates of the uropathogenic E.coli can express type 1 and P fimbriae containing adhesins that recognize cell receptors. While P fimbriae recognize kidney glycolipid receptors and are involved in peyelonephritis, the urothelial for type 1 fimbriae were not identified. We show that t...

متن کامل

Bacteria-Induced Uroplakin Signaling Mediates Bladder Response to Infection

Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015